Stratified Hilbert Modules on Bounded Symmetric Domains

نویسندگان

چکیده

Abstract We analyze the “eigenbundle” (localization bundle) of certain Hilbert modules over bounded symmetric domains rank r , giving rise to complex-analytic fibre spaces which are stratified length $$r+1.$$ r + 1 . The fibres described in terms Kähler geometry as line bundle sections flag manifolds, and metric embedding is determined by taking derivatives reproducing kernel functions. Important examples determinantal ideals defined vanishing conditions along various strata stratification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Holomorphic Functions on Bounded Symmetric Domains

Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...

متن کامل

Complex Dynamical Systems on Bounded Symmetric Domains

We characterize those holomorphic mappings which are the innn-itesimal generators of semi-ows on bounded symmetric domains in complex Banach spaces.

متن کامل

Berezin Transform on Real Bounded Symmetric Domains

Let D be a bounded symmetric domain in a complex vector space VC with a real form V and D = D∩V = G/K be the real bounded symmetric domain in the real vector space V . We construct the Berezin kernel and consider the Berezin transform on the L2-space on D. The corresponding representation of G is then unitarily equivalent to the restriction to G of a scalar holomorphic discrete series of holomo...

متن کامل

Angular Derivatives on Bounded Symmetric Domains

In this paper we generalise the classical Julia–Wolff– Carathéodory theorem to holomorphic functions defined on bounded symmetric domains.

متن کامل

Bloch Constants of Bounded Symmetric Domains

Let D1 and D2 be two irreducible bounded symmetric domains in the complex spaces V1 and V2 respectively. Let E be the Euclidean metric on V2 and h the Bergman metric on V1. The Bloch constant b(D1,D2) is defined to be the supremum of E(f ′(z)x, f ′(z)x) 1 2 /hz(x, x)1/2, taken over all the holomorphic functions f : D1 → D2 and z ∈ D1, and nonzero vectors x ∈ V1. We find the constants for all th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2023

ISSN: ['1661-8254', '1661-8262']

DOI: https://doi.org/10.1007/s11785-023-01377-1